Abstract
The interpretability of disease prediction models is often crucial for their trustworthiness and usability among medical practitioners. Existing methods in interpretable artificial intelligence improve model transparency but fall short in identifying precise, disease-specific primal information. In this work, an interpretable deep learning-based algorithm called the data space landmark refiner was developed, which not only enhances both global interpretability and local interpretability but also reveals the intrinsic information of the data distribution. Using the proposed method, a type 2 diabetes mellitus diagnostic model with high interpretability was constructed on the basis of the electronic health records from two hospitals. Moreover, effective diagnostic information was directly derived from the model’s internal parameters, demonstrating strong alignment with current clinical knowledge. Compared with conventional interpretable machine learning approaches, the proposed method offered more precise and specific interpretability, increasing clinical practitioners’ trust in machine learning-supported diagnostic models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.