Abstract

Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe) lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe) and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation <900 mm), we also document important differences in niche specificity for each subspecies, where distribution of Northern lineage is explained mainly by elevation (mean = 3,413 m) and precipitation seasonality (mean = 161 mm), hybrid lineage by annual precipitation (mean = 139 mm), and Southern subspecies by annual precipitation (mean = 553 mm), precipitation seasonality (mean = 21 mm) and grass cover (mean = 8.2%). Among lineages, we detected low levels of niche overlap: I (Similarity Index) = 0.06 and D (Schoener’s Similarity Index) = 0.01; and higher levels when comparing Northern and Southern subspecies with hybrids lineage (I = 0.32-0.10 and D = 0.12-0.03, respectively). This suggests that important ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km2) with lineages-level (65,321 km2). The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description provides a scientific tool to further develop large scale plans for habitat conservation and preservation of intraspecific genetic variability for this far ranging South American camelid, which inhabits a diversity of ecoregion types from Andean puna to subpolar forests.

Highlights

  • Geographic distribution range is an emerging feature of species’ hierarchical selection of their habitat [1]

  • Niche models have become fundamental in several areas of conservation biology, including the design of local nature reserves, the estimation of potential habitats of endangered or invasive species, and even the identification of subtle but important changes in the distribution of taxa associated with climate change [15,16,17]

  • While special permits are not required for observational studies under Chilean law, access to protected areas to conduct such observations was appropriately granted to the authors of this study, either by private land owners or by the Chilean Corporacion Nacional Forestal (CONAF), where required

Read more

Summary

Introduction

Geographic distribution range is an emerging feature of species’ hierarchical selection of their habitat [1]. Despite its importance for species persistence across the landscape, the exact distribution within the environment is often difficult to ascertain, and a large body of work exists on the subject, the tenets of niche structure are still poorly understood [2]. Such complications for estimating species distribution most likely stem from the myriad of interactions between two major influences on a species: its innate characteristics (e.g. evolutionary history, specialization, physiological tolerance, and resource requirements) and its environment (e.g. competitive interactions, predator-prey relationships, and resources availability) [3,4,5]. Niche models have become fundamental in several areas of conservation biology, including the design of local nature reserves, the estimation of potential habitats of endangered or invasive species, and even the identification of subtle but important changes in the distribution of taxa associated with climate change [15,16,17]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.