Abstract
Chirality transfer refers to the process in which chiral cations compel the crystallization of the inorganic component into the Sohncke group. Enhancing the chirality of the inorganic component in chiral organic-inorganic hybrid metal halides (OIHMHs) through chirality transfer, aimed at improving chiroptical and spintronic properties, remains challenging due to the complexity of the underlying mechanism. To investigate this, we propose a novel concept─chirality transfer coefficient─as a means of quantifying the strength of chirality transfer in OIHMHs. A comparative study of OIHMHs with varying dimensionality, metal ions, and chiral centers was conducted to elucidate this mechanism. By analyzing factors such as hydrogen bonding, the number of chiral centers, dimensionality, helical geometry, and structural distortions, we found that chirality transfer is influenced by a combination of structural dimensions and the number of chiral centers. Importantly, our findings reveal that 0D, and 1D OIHMHs, particularly 1D with a zigzag chain configuration, exhibit stronger chirality transfer than their 2D counterparts. Moreover, in 2D OIHMHs, a reduction in the number of chiral centers enhances chirality transfer. However, no direct correlation was observed between chirality transfer and spin splitting. These insights contribute to a more comprehensive understanding of chirality transfer mechanisms and provide a strategic approach for enhancing the chirality transfer and associated physical properties in OIHMHs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.