Abstract
The interactions between glycosaminoglycans (GAGs) and proteins are essential in numerous biochemical processes that involve ion-pair interactions. However, there is no evidence of direct and specific interactions between GAGs and collagen proteins in native cartilage. The resolution of solid-state NMR (ssNMR) can offer such information but the detection of GAG interactions in cartilage is limited by the sensitivity of the experiments when 13C and 15N isotopes are at natural abundance. In this communication, this limitation is overcome by taking advantage of dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) experiments to obtain two-dimensional (2D) 15N-13C and 13C-13C correlations on native samples at natural abundance. These experiments unveiled inter-residue correlations in the aliphatic regions of the collagen protein previously unobserved. Additionally, our findings provide direct evidence of charge-pair salt-bridge interactions between negatively charged GAGs and positively charged arginine (Arg) residues of collagen protein. We also identified potential hydrogen bonding interactions between hydroxyproline (Hyp) and GAGs, offering atomic insights into the biochemical interactions within the extracellular matrix of native cartilage. Our approach may provide a new avenue for the structural characterization of other native systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.