Abstract
Background:Segmenting colorectal polyps presents a significant challenge due to the diverse variations in their size, shape, texture, and intricate backgrounds. Particularly demanding are the so-called “camouflaged” polyps, which are partially concealed by surrounding tissues or fluids, adding complexity to their detection. Methods:We present CPSNet, an innovative model designed for camouflaged polyp segmentation. CPSNet incorporates three key modules: the Deep Multi-Scale-Feature Fusion Module, the Camouflaged Object Detection Module, and the Multi-Scale Feature Enhancement Module. These modules work collaboratively to improve the segmentation process, enhancing both robustness and accuracy. Results:Our experiments confirm the effectiveness of CPSNet. When compared to state-of-the-art methods in colon polyp segmentation, CPSNet consistently outperforms the competition. Particularly noteworthy is its performance on the ETIS-LaribPolypDB dataset, where CPSNet achieved a remarkable 2.3% increase in the Dice coefficient compared to the Polyp-PVT model. Conclusion:In summary, CPSNet marks a significant advancement in the field of colorectal polyp segmentation. Its innovative approach, encompassing multi-scale feature fusion, camouflaged object detection, and feature enhancement, holds considerable promise for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.