Abstract

8:2 fluorotelomer sulfonic acid (8:2 FTSA) has been commonly detected in the environment, but its behaviors in plants are not sufficiently known. Here, the regular and multi-omics analyses were used to comprehensively investigate the bioaccumulation, biotransformation, and toxicity of 8:2 FTSA in Arabidopsis thaliana. Our results demonstrated that 8:2 FTSA was taken up by A. thaliana roots and translocated to leaves, stems, flowers, and seeds. 8:2 FTSA could be successfully biotransformed to several intermediates and stable perfluorocarboxylic acids (PFCAs) catalyzed by plant enzymes. The plant revealed significant growth inhibition and oxidative damage under 8:2 FTSA exposure. Metabolomics analysis showed that 8:2 FTSA affected the porphyrin and secondary metabolisms, resulting in the promotion of plant photosynthesis and antioxidant capacity. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were related to transformation and transport processes. Integrative transcriptomic and metabolomic analysis revealed that DEGs and differentially expressed metabolites (DEMs) in plants were predominantly enriched in the carbohydrate metabolism, amino acid metabolism, and lipid metabolism pathways, resulting in greater energy consumption, generation of more nonenzymatic antioxidants, alteration of the cellular membrane composition, and inhibition of plant development. This study provides the first insights into the molecular mechanisms of 8:2 FTSA stress response in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call