Abstract

Amidst the swift expansion of the electric vehicle industry, the imperative for alternative battery technologies that balance economic feasibility with sustainability has reached unprecedented importance. Herein, we utilized Perovskite-based oxide compounds barium titanate (BaTiO3) and strontium titanate (SrTiO3) nanoparticles as anode materials for lithium-ion batteries from straightforward and standard carbonate-based electrolyte with 10% fluoroethylene carbonate (FEC) additive [1M LiPF6 (1:1 EC: DEC) + 10% FEC]. SrTiO3 and BaTiO3 electrodes can deliver a high specific capacity of 80 mA h g−1 at a safe and low average working potential of ≈0.6 V vs. Li/Li+ with excellent high-rate performance with specific capacity of ~90 mA h g−1 at low current density of 20 mA g−1 and specific capacity of ~80 mA h g−1 for over 500 cycles at high current density of 100 mA g−1. Our findings pave the way for the direct utilization of perovskite-type materials as anode materials in Li-ion batteries due to their promising potential for Li+ ion storage. This investigation addresses the escalating market demands in a sustainable manner and opens avenues for the investigation of diverse perovskite oxides as advanced anodes for next-generation metal-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.