Abstract

As aspects extend or replace existing functionality at specific join points in the code, their behavior may raise new exceptions, which can flow through the program execution in unexpected ways. Assuring the reliability of exception handling code in aspect-oriented (AO) systems is a challenging task. Testing the exception handling code is inherently difficult, since it is tricky to provoke all exceptions during tests, and the large number of different exceptions that can happen in a system may lead to the test-case explosion problem. Moreover, we have observed that some properties of AO programming (e.g., quantification, obliviousness) may conflict with characteristics of exception handling mechanisms, exacerbating existing problems (e.g., uncaught exceptions). The lack of verification approaches for exception handling code in AO systems stimulated the present work. This work presents a verification approach based on a static analysis tool, called SAFE, to check the reliability of exception handling code in AspectJ programs. We evaluated the effectiveness and feasibility of our approach in two complementary ways (i) by investigating if the SAFE tool is precise enough to uncover exception flow information and (ii) by applying the approach to three medium-sized ApectJ systems from different application domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.