Abstract

Hormesis in soil enzymes is well-established, yet the underlying mechanism remains elusive. In this novel study, we investigated the effects of low-dose Cd exposure (0, 0.03, 0.3, 3, and 30 mg·kg−1) in farmland soil within a typical constructed wetland environment. We assessed the activities of four soil enzymes (urease (URE), denitrification enzyme (DEA), dehydrogenase (DHA), and alkaline phosphatase (ALP)) at varying exposure durations (0 h, 24 h, and 48 h), evaluating hormetic characteristics across these time intervals. Additionally, we determined kinetic parameters, specifically the Michaelis constant (Km) and maximum reaction velocity (Vmax), for these enzymes while examining potential alterations in microbial community structure. Our findings revealed hormesis in all four soil enzymes at 24 h of exposure, with varying stimulus width and maximum hormesis rates. Interestingly, heavy metals did not significantly influence the diversity of soil microbial communities, but they did inhibit the ability of soil microbial communities to secrete extracellular enzymes. This resulted in a reduction in the soil enzyme pool and a consequential shift in overall soil enzyme activities. The conclusion of this study is that low-dose Cd primarily reduced extracellular enzyme secretion by soil microorganisms, leading to a reduction in the size of the soil enzyme pool and thereby inducing hormesis in soil enzyme activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.