Abstract

The two-dimensional (2D) materials class earned a boost in 2021 with biphenylene synthesis, which is structurally formed by the fusion of four-, six-, and eight-membered carbon rings, usually named 4-6-8-biphenylene network (BPN). This research proposes a detailed study of electronic, structural, dynamic, and mechanical properties to demonstrate the potential of the novel biphenylene-like indium nitride (BPN-InN) via density functional theory and molecular dynamics simulations. The BPN-InN has a direct band gap energy transition of 2.02 eV, making it promising for optoelectronic applications. This structure exhibits maximum and minimum Young modulus of 22.716 and 22.063 N/m, Poisson ratio of 0.018 and -0.008, and Shear modulus of 11.448 and 10.860 N/m, respectively. To understand the BPN-InN behavior when subjected to mechanical deformations, biaxial and uniaxial strains in armchair and zigzag directions from -8 to 8% were applied, achieving a band gap energy modulation of 1.36 eV over tensile deformations. Our findings are expected to motivate both theorists and experimentalists to study and obtain these new 2D inorganic materials that exhibit promising semiconductor properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.