Abstract

Here, we investigate the hypothesis that despite the existence of at least two high-density amorphous ices, only one high-density liquid state exists in water. We prepared a very-high-density amorphous ice (VHDA) sample and rapidly increased its temperature to around 205 ± 10K using laser-induced isochoric heating. This temperature falls within the so-called "no-man's land" well above the glass-liquid transition, wherein the IR laser pulse creates a metastable liquid state. Subsequently, this high-density liquid (HDL) state of water decompresses over time, and we examined the time-dependent structural changes using short x-ray pulses from a free electron laser. We observed a liquid-liquid transition to low-density liquid water (LDL) over time scales ranging from 20ns to 3 μs, consistent with previous experimental results using expanded high-density amorphous ice (eHDA) as the initial state. In addition, the resulting LDL derived both from VHDA and eHDA displays similar density and degree of inhomogeneity. Our observation supports the idea that regardless of the initial annealing states of the high-density amorphous ices, the same HDL and final LDL states are reached at temperatures around 205K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.