Abstract
AbstractPolycyclic aromatic hydrocarbons (PAHs) are key components of organic electronics. The electronic properties of these carbon‐rich materials can be controlled through doping with heteroatoms such as B and N, however, few convenient syntheses of BN‐doped PAHs have been reported. Described herein is the rationally designed, two‐step syntheses of previously unknown ixene and BN‐doped ixene (B2N2‐ixene), and their characterizations. Compared to ixene, B2N2‐ixene absorbs longer‐wavelength light and has a smaller electrochemical energy gap. In addition to its single‐crystal structure, scanning tunneling microscopy revealed that B2N2‐ixene adopts a nonplanar geometry on a Au(111) surface. The experimentally obtained electronic structure of B2N2‐ixene and the effect of BN‐doping were confirmed by DFT calculations. This synthesis enables the efficient and convenient construction of BN‐doped systems with extended π‐conjugation that can be used in versatile organic electronics applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.