Abstract

Chemical-vapor-deposited (CVD) polycrystalline diamond films have recently been reported with a thermal conductivity that is only 25% less than that of high quality single-crystal natural diamond. By studying a series of such films of various thicknesses grown under virtually identical conditions, we have discovered a significant (factor of four) through the thickness gradient in thermal conductivity. The observed gradient is attributed mainly to phonon scattering by the roughly cone-shaped columnar microstructure. For 350 μm films, the material near the top (growth) surface has a conductivity of at least 21 W/cm °C, i.e., comparable to the best single crystals. This remarkable dependence of thermal conductivity on microstructure has important implications for thermal management of microelectronic devices using CVD diamond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.