Abstract

The opportunistic pathogen, Pseudomonas aeruginosa, is a main cause of nosocomial infections in Lebanese hospitals. This pathogen is highly threatening due to its ability to develop multiresistance toward a large variety of antibiotics, including the carbapenem subgroup of β-lactams. In this study, we surveyed the enzymatic and nonenzymatic mechanisms of carbapenem resistance in several multidrug-resistant (MDR) strains of P. aeruginosa isolated from patients suffering from nosocomial urinary tract infections in a Lebanese hospital. The occurrence of β-lactamase-encoding genes notably GES, KPC, IMP, VIM, NDM, and OXA, which are characterized by a carbapenemase activity was checked by genomic analyses. Our results provide a first evidence of the occurrence of GES in clinical P. aeruginosa isolates resistant to carbapenems in Lebanon. More interestingly, we showed that almost 40% of the analyzed strains have acquired a dual-carbapenemase secretion of GES-6 and VIM-2 or IMP-15, this being a rare phenomenon among this type of multidrug resistance. Moreover, LC-MS/MS analyses revealed a high prevalence of another enzymatic mechanism of resistance; this is the coexistence of AmpC and Pdc-13 as well as a number of virulence proteins, for instance pilin, lytic transglycosylase, ecotin, chitin-binding protein (Cbp), and TolB-dependent receptor. It is to be noted that a mutation of the oprD2 gene encoding a porin selective for carbapenems has been detected in almost 66% of our strains. All in all, our study reveals by the use of different methods, unusual simultaneous enzymatic (GES, IMP, VIM, pdc13, and AmpC) and nonenzymatic mechanisms of resistance (reduction of OprD2 expression) for MDR Pseudomonas aeruginosa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call