Abstract

Interactions between a catalyst and electrolyte have paramount importance for the performance of electrochemical devices. Here, we present the cation-hydroxide-water coadsorption on the Pt surface by a rotating disk electrode and neutron reflectometry. The rotating disk electrode experiments show that the current density of Pt rapidly dropped at hydrogen oxidation potentials due to tetramethylammonium hydroxide (TMAOH)-water coadsorption. Subsequent neutron reflectometry in 0.1 M TMAOD/D2O reveals that the thickness of the coadsorbed layer increased to 18 Å after 10.5 h exposure at 0.1 V vs reverse hydrogen electrode (RHE). The scattering length density analysis revealed that the TMAOD to water ratio in the coadsorbed layer was 4.5, which was significantly higher than the reportedly highest TMAOH concentration in aqueous solution. Finally, we discuss the potential impact of the coadsorbed layer on the performance and durability of alkaline membrane fuel cells, which sheds light on the material design of high-performance alkaline electrochemical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.