Abstract

Hydraulic fracturing is an effective method for stimulating reservoirs, making the economic development of ultra-tight shale gas and coalbed methane reservoirs possible. These formations are rich in nanopores, in which the fracturing fluid, such as fresh water, the flow, and the behavior of this flow differ significantly from those described in the classic Navier-Stokes formula. In bulk space, the interaction force exerted by the solid phase can be ignored, but the solid–fluid interaction plays a dominant role in nanoconfinement spaces in which the pore size is comparable to the molecular diameter. Nanoconfined water molecules tend to approach the water-wet pore surface, enhancing the water viscosity, which is a key parameter affecting the water flow capacity. Conversely, water molecules tend to stay in the middle of nanopores when subjected to a hydrophobic surface, leading to a decrease in viscosity. Thus, nanoconfined water viscosity is a function of the strength of the surface–fluid interaction, rather than a constant parameter, in classic theory. However, the influence of varying the viscosity on the nanoscale water flow behavior is still not fully understood. In this research, we incorporate wettability-dependent viscosity into a pore network modeling framework for stable flow for the first time. Our results show that: (a) the increase in viscosity under hydrophilic nanoconfinement could reduce the water flow capacity by as much as 11.3%; (b) the boundary slip is the primary mechanism for boosting the water flow in hydrophobic nanopores, as opposed to the slight enhancement contributed by a viscosity decline; and (c) water flow characterization in nanoscale porous media must consider both the pore size and surface wettability. Revealing the varying viscosity of water flow confined in nanopores can advance our microscopic understanding of water behavior and lay a solid theoretical foundation for fracturing-water invasion or flowback simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call