Abstract

The thermal conductivity (κ) of two-dimensional conducting and transparent carbon nanosheets (CNSs) prepared by a catalyst- and transfer-free process is calculated for the first time by the optothermal Raman technique. A systematic structural analysis of CNSs reveals that the thickness of polymer films affects the interaction between molecules and a Si wafer significantly, thus helping to determine the ratio of sp2 and sp3 bonding configurations of carbon (C) atoms in the CNS. Notably, the holding time of carbonization can realize a hierarchical structure with graphitic carbon dots emerging from the CNS through the rearrangement of carbon atoms, leading to the excellent κ value of 540 W/(m·K) at 310 K. It is demonstrated that an appropriate increase in carbonization time can be an effective approach for improving the ratio of sp2- to sp3-bonded C atoms in the CNS. The thermal conductivity of the CNS with the highest ratio of sp2- to sp3-bonded C atoms exhibits superior behavior and is comparable to that of reduced graphene oxide and supported graphene, respectively. Finally, when the CNS with the highest κ value of 540 W/(m·K) was applied to a heater as the heat-dissipating material, the heater showed the temperature decrease by 14 °C compared to the case without the CNS. The catalyst- and transfer-free approach for the synthesis of CNSs is highly desirable for use as heat sink materials or substrates with heat dissipation functions for extensively integrated electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call