Abstract
Stimuli-responsive and, in particular, temperature-responsive smart materials have recently gained much attention in a variety of applications. On the other hand, 4-(dimethylamino)pyridine (DMAP) and related structures are widely used as nucleophilic catalysts and also as specific parts of rationally designed molecules, where reversible reactions of the pyridinic nitrogen with electrophiles are involved. In our study, we have found an unexpectedly significant impact of temperature on the protonation degree of DMAP derivatives, especially in the case of protonation of the 4-(dimethylamino)-1-(2,3,5,6-tetrafluoropyridin-4-yl)pyridinium cation, derived from the reaction of DMAP with pentafluoropyridine. Thus, when dissolved in the TfOH-SO2ClF-CD2Cl2 acid system at 30 °C, this cation underwent a slight (<7%) protonation on the dimethylamino group, while the temperature decrease to -70 °C resulted in its complete protonation. Notably, such a scale of this phenomenon has never been observed before for other weak nucleophiles, being many times lower at the same change of temperature. The mechanistic aspects of these intriguing results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.