Abstract
Hyaluronate lyases are a class of endoglycosaminidase enzymes, which are of considerable complexity and heterogeneity. Their primary function is to degrade hyaluronan and certain other glycosaminoglycans and facilitate the spread of disease. Among hyaluronate lyases, the bacteriophage-associated enzymes are unique as they have the lowest molecular mass, very low amino acid sequence homology with bacterial hyaluronate lyases, and exhibit absolute specificity for one type of glycosaminoglycan, i.e. hyaluronan. Despite such unique characteristics significant details on structural features of these lyases are not available. The Streptococcus pyogenes bacteriophage 10403 contains a gene, hylP2, which encodes for hyaluronate lyase (HylP2) in this organism. HylP2 was cloned, overexpressed, and purified to homogeneity. The recombinant HylP2 exists as a homotrimer of molecular mass about 110 kDa, under physiological conditions. Limited proteolysis and guanidine hydrochloride denaturation studies demonstrated that the N-terminal region of the protein is flexible, whereas the C-terminal portion has a compact conformation. The enzyme shows sequential unfolding, with the N-terminal unfolding first followed by the simultaneous unfolding and dissociation of the stabilized trimeric C-terminal domain. We isolated a functionally active C-terminal fragment (Ser(128)-Lys(337)) of the protein that was stabilized in a trimeric configuration. Comparative functional studies with full-length protein, N:C complex, and isolated C-terminal domain demonstrated that the active site of HylP2 is present in the C-terminal portion of the enzyme, and the N-terminal portion modulates the substrate specificity and enzymatic activity of the C-terminal domain.
Highlights
Nate lyase in the biology of the organism in which it is present
The hyaluronate lyase isolated from group A streptococci or group B streptococci besides cleaving HA show weak but significant activities toward chondroitin and/or chondroitin 4/6-sulfate
The most studied ones are those secreted by strains of group B streptococci and belong to the class of glycosaminoglycan degrading enzymes [3]
Summary
Nate lyase in the biology of the organism in which it is present. First being the enhancement of invasion and spread of organism during infection by destruction of the extracellular matrix. It will be interesting to study the detailed structural and functional properties of the bacteriophage-associated enzyme, which corresponds to only half the molecular mass (i.e. about one structural domain) of the bacterial hyaluronate lyases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.