Abstract

Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO.. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni-O orbital hybridization, which triggers the local electron-electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*(VO) to OH*(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call