Abstract

Four Ru(II) complexes were prepared bearing two new tetradentate ligands, cyTPA and 1-isocyTPQA, which feature a piperidine ring that provides a structurally rigid backbone and facilitates the installation of other donors as the fourth chelating arm, while avoiding the formation of stereoisomers. The photophysical properties and photochemistry of [Ru(cyTPA)(CH3CN)2]2+ (1), [Ru(1-isocyTPQA)(CH3CN)2]2+ (2), [Ru(cyTPA)(py)2]2+ (3), and [Ru(1-isocyTPQA)(py)2]2+ (4) were compared. The quantum yield for the CH3CN/H2O ligand exchange of 2 was measured to be Φ400 = 0.033(3), 5-fold greater than that of 1, Φ400 = 0.0066(3). The quantum yields for the py/H2O ligand exchange of 3 and 4 were lower, 0.0012(1) and 0.0013(1), respectively. DFT and related calculations show the presence of a highly mixed 3MLCT/3ππ* excited state as the lowest triplet state in 2, whereas the lowest energy triplet states in 1, 3, and 4 were calculated to be 3LF in nature. The mixed 3MLCT/3ππ* excited state places significant spin density on the quinoline moiety of the 1-isocyTPQA ligand positioned trans to the photolabile CH3CN ligand in 2, suggesting the presence of a trans-type influence in the excited state that enhances ligand exchange. Ultrafast spectroscopy was used to probe the excited states of 1-4, which confirmed that the mixed 3MLCT/3ππ* excited state in 2 promotes ligand dissociation, representing a new manner to effect photoinduced ligand exchange. The findings from this work can be used to design improved complexes for applications that require efficient ligand dissociation, as well as for those that require minimal deactivation of the 3MLCT state through low-lying metal-centered states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call