Abstract

Aerobic bacteria use molecular oxygen as a common co-substrate for key enzymes of aromatic metabolism. In contrast, in anaerobes all oxygen-dependent reactions are replaced by a set of alternative enzymatic processes. The anaerobic degradation of phenol to a non-aromatic product involves enzymatic processes that are uniquely found in the aromatic metabolism of anaerobic bacteria: (i) ATP-dependent phenol carboxylation to 4-hydroxybenzoate via a phenylphosphate intermediate (biological Kolbe-Schmitt carboxylation); (ii) reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA; and (iii) ATP-dependent reductive dearomatization of the key intermediate benzoyl-CoA in a 'Birch-like' reduction mechanism. This review summarizes the results of recent mechanistic studies of the enzymes involved in these three key reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.