Abstract

Microbial and animal rhodopsins possess retinal chromophores which capture light and normally photoisomerize from all-trans to 13-cis and from 11-cis to all-trans-retinal, respectively. Here, we show that a near-infrared light-absorbing enzymerhodopsin from Obelidium mucronatum (OmNeoR) contains the all-trans form in the dark but isomerizes into the 7-cis form upon illumination. The photoproduct (λmax = 372 nm; P372) possesses a deprotonated Schiff base, and the system exhibits a bistable nature. The photochemistry of OmNeoR was arrested at <270 K, indicating the presence of a potential barrier in the excited state. Formation of P372 is accompanied by protonation changes of protonated carboxylic acids and peptide backbone changes of an α-helix. Photoisomerization from the all-trans to 7-cis retinal conformation rarely occurs in any solvent and protein environments; thus, the present study reports on a novel photochemistry mediated by a microbial rhodopsin, leading from the all-trans to 7-cis form selectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.