Abstract

Phototropin (Phot), a blue light-sensing LOV domain protein, mediates blue light responses and is evolutionarily conserved across the green lineage. Klebsormidium nitens, a green terrestrial alga, presents a valuable opportunity to study adaptive responses from aquatic to land habitat transitions. We determined the crystal structure of Klebsormidium nitens Phot LOV1 domain (KnLOV1) in the dark and engineered different mutations (R60K, Q122N, and D33N) to modulate the lifetime of the photorecovery cycle. We observed unusual, slow recovery kinetics in the wild-type KnLOV1 domain (τ = 41 ± 3 min) compared to different mutants (R60K: τ = 2.0 ± 0.1 min, Q122N: τ = 1.7 ± 0.1 min, D33N: τ = 9.6 ± 0.1 min). Crystal structures of wild-type KnLOV1 and mutants revealed subtle but critical changes near the protein chromophore that is responsible for modulating protein dark recovery time. Our findings shed light on the unique structural and biochemical characteristics of the newly studied KnLOV1 and its evolutionary importance for phototropin-mediated physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.