Abstract

A new series of pH-regulated asymmetric amino-acid gemini surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine (Ace(m)-2-Ace(n)), differing by the asymmetric degree and length of the carbon tails (m = 8 and 10, n = 10, 12, 14, and 16), were synthesized in three steps. On the basis of pKa values obtained by pH titration, surface tension, fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM) measurements were performed to study the surface adsorption and aggregation properties in aqueous Ace(m)-2-Ace(n) solution. The new compounds have higher surface activity and better pH adaptability in comparison with that of symmetric gemini surfactants Ace(n)-2-Ace(n). The molecule behavior of Ace(m)-2-Ace(n) can be adjusted by either the hydrophobic group or the pH. With increasing alkyl chain length, the surface adsorption declines but its ability to form aggregates increases. We find that pH can promote the self-assembly transition of Ace(m)-2-Ace(n) from surfactant monomers to aggregates through protonation between H(+) and the tertiary nitrogen group. TEM data further confirm the pH-regulated molecular self-assembly process and the existence of vesicles at neutral or weak acidic pH. pH-recyclability is found to be reversible by pH-light transmittance recycle tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call