Abstract

The preparations and spectroscopic characterisation of the hydrolytically unstable As(III) complexes, [AsF(3)(OPR(3))(2)] (R = Me or Ph) and [AsF(3){Me(2)P(O)CH(2)P(O)Me(2)}] are described and represent the first examples of complexes of AsF(3) with neutral ligands. The crystal structure of [AsF(3){Me(2)P(O)CH(2)P(O)Me(2)}] contains dimers with bridging diphosphine dioxide, but there are also long contacts between the dimers to neighbouring phosphine oxide groups, completing a very distorted six-coordination at arsenic and producing a weakly associated polymer structure. The reaction of AsF(3) with OAsPh(3) affords Ph(3)AsF(2), and no arsine oxide complex was formed. Reaction of SbF(3) with OER(3) (R = Me or Ph, E = P or As), Me(2)P(O)CH(2)P(O)Me(2) and Ph(2)P(O)(CH(2))(n)P(O)Ph(2) (n = 1 or 2) in MeOH produces [SbF(3)(OER(3))(2)], [SbF(3){Me(2)P(O)CH(2)P(O)Me(2)}] and [SbF(3){Ph(2)P(O)(CH(2))(n)P(O)Ph(2)}] respectively. The X-ray structures reveal that the complexes contain square pyramidal SbF(3)O(2) cores with apical F and cis disposed pnictogen oxides. However, whilst [SbF(3)(OER(3))(2)] (R = Ph: E = P or As; R = Me: E = As) and [SbF(3){Ph(2)P(O)CH(2)P(O)Ph(2)}] are monomeric, [SbF(3){Me(2)P(O)CH(2)P(O)Me(2)}] is a dimer with bridging diphosphine dioxides producing a twelve-membered ring, and [SbF(3){Ph(2)P(O)(CH(2))(2)P(O)Ph(2)}] is a chain polymer with diphosphine dioxide bridges. In the OAsR(3) reactions with SbF(3), R(3)AsF(2) are also formed. Notably the Sb-O(P) bonds are shorter than As-O(P), despite the covalent radii (As < Sb), consistent with very weak coordination of the AsF(3). IR and multinuclear ((1)H, (19)F and (31)P) NMR data are reported and discussed. BiF(3) does not react with pnictogen oxide ligands under similar conditions and halide exchange of bismuth chloro complexes with Me(3)SnF gave BiF(3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.