Abstract
A key paradigm in seismology is that earthquakes release elastic strain energy accumulated during an interseismic period on approximately planar faults. Earthquake slip models may be further informed by empirical relations such as slip to length. Here, we use differential lidar to demonstrate that the Papatea fault-a key element within the 2016 Mw 7.8 Kaikōura earthquake rupture-has a distinctly nonplanar geometry, far exceeded typical coseismic slip-to-length ratios, and defied Andersonian mechanics by slipping vertically at steep angles. Additionally, its surface deformation is poorly reproduced by elastic dislocation models, suggesting the Papatea fault did not release stored strain energy as typically assumed, perhaps explaining its seismic quiescence in back-projections. Instead, it slipped in response to neighboring fault movements, creating a localized space problem, accounting for its anelastic deformation field. Thus, modeling complex, multiple-fault earthquakes as slip on planar faults embedded in an elastic medium may not always be appropriate.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.