Abstract

A theory of nuclear magnetic resonance (NMR) in graphene is presented. The canonical form of the electron-nucleus hyperfine interaction is strongly modified by the linear electronic dispersion. The NMR shift and spin-lattice relaxation time are calculated as a function of temperature, chemical potential, and magnetic field, and three distinct regimes are identified: Fermi-, Dirac-gas, and extreme quantum limit behaviors. A critical spectrometer assessment shows that NMR is within reach for fully 13C enriched graphene of reasonable size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.