Abstract
In this work, we prepare transformable HEA/Cu nanolaminates (NLs) with equal individual layer thickness (h) by the magnetron sputtering technique, i.e., Fe50Mn30Co10Cr10/Cu and Fe50Mn30Co10Ni10/Cu, and comparatively study He-ion irradiation effects on their microstructure and mechanical properties. It appears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes (i.e., increased hardness at small h and hardness plateau at large h), while the He-implanted ones exhibit monotonically increased hardness. Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs, the Fe50Mn30Co10Cr10/Cu NLs manifest the trend that smaller h leads to greater irradiation hardening. By contrast, the Fe50Mn30Co10Ni10/Cu NLs exhibit the maximum irradiation hardening at a critical h = 50 nm. Below this critical size, smaller h results in lower radiation hardening (similar to bimetal NLs), while above this size, smaller h results in greater radiation hardening (similar to Fe50Mn30Co10Cr10/Cu NLs). Moreover, these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity (SRS m) before and after He-ion irradiation. Nevertheless, compared with as-deposited samples, the irradiated Fe50Mn30Co10Cr10/Cu NLs display reduced SRS, while the irradiated Fe50Mn30Co10Ni10/Cu NLs display enhanced SRS. Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion, i.e., dislocations shearing or bypassing He bubbles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.