Abstract

Using the Boltzmann-Peierls equation for phonon transport approach with the inputs of interatomic force constants from the self-consistent charge density functional tight binding method, we calculate the room-temperature in-plane lattice thermal conductivities k of multilayer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite monolayer graphene and 3-layer graphene agree well with previous experiments. For unstrained graphene systems, both the intrinsic k and the extent of the diffusive transport regime present a drastic dimensional transition in going from monolayer to 2-layer graphene and thereafter a gradual transition to the graphite limit. We find a peak enhancement of intrinsic k for multilayer graphene and graphite with increasing strain with the largest enhancement amplitude ∼40%. Competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems. This study provides insights into engineering k of multilayer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.