Abstract

Reduced graphene oxide (rGO) has emerged as an excellent interfacial material for improvising the performance of dye-sensitized solar cells (DSSC). Herein, we have applied rGO as interfacial layers between a fluorine doped tin oxide (FTO) coated glass substrate and semiconducting material TiO2 in a photoanode of a DSSC which showed an unusual enhancement in generating a photocurrent in comparison to the control (without rGO layers). An electrochemical impedance spectroscopy (EIS) study was performed to gain the mechanistic insights into such a remarkable enhancement of photoelectric conversion efficiency (PCE) which revealed improved charge transfer and suppressed charge recombination due to high-electrical conductivity and probably more negative work function of our rGO material compared to the bare TiO2 photoanode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.