Abstract
We experimentally investigate the magnetic field dependence of the critical current Ic(B) of superconducting niobium thin films patterned with periodic and quasiperiodic antidot arrays on the submicron scale. For this purpose we monitor current–voltage characteristics at different values of B and temperature T. We investigate samples with antidots positioned at the vertices of two different tilings with quasiperiodic symmetry, namely the Shield Tiling and the Tuebingen Triangle Tiling. For reference we investigate a sample with a triangular antidot lattice. We find modulations of the critical current for both quasiperiodic tilings, which have partly been predicted by numerical simulations but not observed in experiments yet. The particularity of these commensurability effects is that they correspond to magnetic field values slightly above an integer multiple of the matching field. The observed matching effects can be explained by the caging of interstitial vortices in quasiperiodically distributed cages and the formation of symmetry-induced giant vortices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.