Abstract

BackgroundPrimary hyperoxaluria type 1 (PH1), is a rare and heterogeneous disease and one of major causes of renal insufficiency in Tunisia, caused by mutations in the AGXT gene. 33-34InsC mutation, was mainly described in children with a severe clinical feature leading to early death, but it was uncommonly reported in adult patients.MethodsCommon mutations in AGXT were tested using PCR/RFLP technique in 111 patients (68 adult, 43 children) with suspected PH1.ResultsWe described 16 cases (eight adult and eight children) with a 33-34InsC mutation with a median age of 24 years [6 months - 73 years]. All children were in end stage renal disease (ESRD) at the median age of 3 years due to lithiasis and/or nephrocalcinosis. Unfortunately, 75% of them died with a median age of 2.5 years. For the majority of adults only spontaneous elimination of urolithiasis were noted, 37.5% preserved until now a normal renal function and 62.5% of them reached ESRD at the median age of 55.8 ± 12.31 years old.ConclusionIn this study 33-34InsC mutation gives a controversial clinical effect in children and adults. The implication of other genetic and/or environmental factors can play a crucial role in determining the ultimate phenotype.

Highlights

  • Primary hyperoxaluria type 1 (PH1), is a rare and heterogeneous disease and one of major causes of renal insufficiency in Tunisia, caused by mutations in the AGXT gene. 33-34InsC mutation, was mainly described in children with a severe clinical feature leading to early death, but it was uncommonly reported in adult patients

  • The kidney is the first organ affected by the massive rise in urinary oxalate through the genesis of recurrent stones and / or progressive nephrocalcinosis to finish in an early end-stage renal disease (ESRD) [1]

  • We reported a pediatric cases with severe clinical forms and adults patients with a mild and unusual clinical course of PH1 toward ESRD

Read more

Summary

Introduction

Primary hyperoxaluria type 1 (PH1), is a rare and heterogeneous disease and one of major causes of renal insufficiency in Tunisia, caused by mutations in the AGXT gene. 33-34InsC mutation, was mainly described in children with a severe clinical feature leading to early death, but it was uncommonly reported in adult patients. Primary hyperoxaluria type 1 (PH1) is the common and severe form of hyperoxaluria This rare autosomal recessive inborn disease is a result of glyoxylate metabolism defect, caused by an absence, deficiency or mislocalization of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGXT). The kidney is the first organ affected by the massive rise in urinary oxalate through the genesis of recurrent stones and / or progressive nephrocalcinosis to finish in an early end-stage renal disease (ESRD) [1]. The presentation varies from infantile nephrocalcinosis and failure to thrive, as a result of renal impairment, to a recurrent or only occasional urolithiasis [4] usually one half of patients experience ESRD at the time of diagnosis and 80% develop ESRD by the age of 3 years. The diagnosis of patients affected during adulthood is often altered, over 50% of them reach ESRD at the time of diagnosis, and are characterized by occasional stone passage [5, 6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.