Abstract

The unique properties of ketoximes are used prominently for the synthesis of heterocycles. In contrast, their potential to absorb light and photoelectron transfer processes remains challenging. Widespread interest in controlling direct excitation of ketoxime tacticity unlocks unconventional reaction pathways, enabling photochemical intramolecular skeletal modification to constitute alkynyl sulfides that cannot be realized via traditional activation. Despite decades of advancements, the alkynyl sulfides, particularly those composed of polar functionalities and derived from renewable sources, remain unknown. These findings demonstrate the importance of decelerated ketoxime from β-oxodithioester for the identification of reaction conditions. The method uses mild reaction conditions to generate excited-state photoreductant for the functionalization of an array of alkynyl sulfides. Additionally, a fundamental understanding of elementary steps using electrochemical and spectroscopic techniques/experiments revealed a PCET pathway to this transformation, while the involved substrates and their properties with improved economical tools indicated the translational potential of this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call