Abstract

Abstract A class of deformation processing applications based on the severe plastic deformation (SPD) inherent to chip formation in machining is described. The SPD can be controlled, in situ, to access a range of strains, strain rates, and temperatures. These parameters are tuned to engineer nanoscale microstructures (e.g., nanocrystalline, nanotwinned, and bimodal) by in situ control of the deformation rate. By constraining the chip formation, bulk forms (e.g., foil, sheet, and rod) with nanocrystalline and ultrafine grained microstructures are produced. Scaling down of the chip formation in the presence of a superimposed modulation enables production of nanostructured particulate with controlled particle shapes, including fiber, equiaxed, and platelet types. The SPD conditions also determine the deformation history of the machined surface, enabling microstructural engineering of surfaces. Application of the machining-based SPD to obtain deformation-microstructure maps is illustrated for a model material system—99.999% pure copper. Seemingly diverse, these unusual applications of machining are united by their common origins in the SPD phenomena prevailing in the deformation zone. Implications for large-scale manufacturing of nanostructured materials and optimization of SPD microstructures are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.