Abstract
The alternating physical properties, especially melting points, of α,ω-disubstituted n-alkanes and their parent n-alkanes had been known since Baeyer's report in 1877. There is, however, no general and comprehensive explanation for such a phenomenon. Herein, we report the synthesis and examination of a series of novel ω-phenyl n-alkyl tropylium tetrafluoroborates, which also display alternation in their physicochemical characters. Despite being organic salts, the compounds with odd numbers of carbons in the alkyl bridge exist as room temperature ionic liquids. In stark contrast to this, the analogues with even numbers of carbons in the linker are crystalline solids. These solid nonconjugated molecules exhibit curious photoluminescent properties, which can be attributed to their ability to form through-space charge-transfer complexes to cause crystallization-induced emission enhancement. Most notably, the compound with the highest photoluminescent quantum yield in this series showed an unusual arrangement of carbocationic dimer in the solid state. A combination of XRD analysis and ab initio calculations revealed interesting insights into these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.