Abstract

Aggregation-induced emission (AIE) is commonly observed for propeller-like luminogens with aromatic rotors and stators. Herein, we report that a coumarin derivative containing a seven-membered aliphatic ring (CD-7) but no rotors showed typical AIE characteristics, whereas its analogue with a five-membered aliphatic ring (CD-5) exhibited an opposite aggregation-caused quenching (ACQ) effect. Experimental and theoretical results revealed that a large aliphatic ring in CD-7 weakens structural rigidity and promotes out-of-plane twisting of the molecular backbone to drastically accelerate nonradiative excited-state decay, thus resulting in poor emission in solution. The restriction of twisting motion in aggregates blocks the nonradiative decay channels and enables CD-7 to fluoresce strongly. The results also show that AIE is a general phenomenon and not peculiar to propeller-like molecules. The AIE and ACQ effects can be switched readily by the modulation of molecular rigidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.