Abstract

Suspensions of lignite in a solution of a high molecular weight carboxymethylcellulose show peculiar rheological behaviour. Unless the lignite concentration is sufficiently high, apparent viscosity and viscoelastic moduli of the suspension are lower than those of the pure solution. This effect is not suppressed by changing pH and seems to be common for low-concentrated suspensions in solutions of high molecular weight (bio)polymer. It is explained by specific structuring of the suspensions. Lignite particles at lower concentration separate long cellulose chains and facilitate their movement under shear flow. The particles loosen inter-chain contacts, disturb and release elastic gel-like structure formed by the long cellulose chains, which results in the low strain oscillatory deformation, the decrease in the moduli and the increase in the loss angle. If the amount of lignite particles is sufficiently high, suspension stiffening occurs as usual. No such effect was observed for suspensions prepared from the low molecular weight derivative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.