Abstract

Complex molecular knots and links are still difficult to synthesize and the properties arising from their topology are mostly unknown. Here, we report on a comparative photophysical study carried out on a family of closely related quinolinium-based knots and links to determine the impact exerted by topology on the molecular backbone. Our results indicate that topology has a negligible influence on the behavior of loosely braided molecules, which mostly behave like their unbraided equivalents. On the other hand, tightly braided molecules display distinct features. Their higher packing density results in a pronounced ability to resist deformation, a significant reduction in the solvent-accessible surface area and favors close-range π-π interactions between the quinolinium units and neighboring aromatics. Finally, the sharp alteration in behavior between loosely and tightly braided molecules sheds light on the factors contributing to braiding tightness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call