Abstract

AbstractDer Nachweis und die Charakterisierung von eingeschlossenen Wassermolekülen in chemischen Gebilden und Biomakromolekülen ist weiterhin eine Herausforderung für feste Materialien. Wir präsentieren hier Protonen‐detektierte Festkörper‐Kernspinresonanzspektroskopie (NMR) Experimente bei Rotationsfrequenzen von 100 kHz um den magischen Winkel und bei hohen statischen Magnetfeldstärken (28.2 T), die den Nachweis eines einzelnen Wassermoleküls ermöglichen, das im Calix[4]aren‐Hohlraum eines Lanthan‐Komplexes durch eine Kombination von drei Arten nicht‐kovalenter Wechselwirkungen fixiert ist. Die Protonenresonanzen des Wassers werden bei einer chemischen Verschiebung nahe Null ppm nachgewiesen, was wir durch quantenchemische Berechnungen bestätigen. Berechnungen mit der Dichtefunktionaltheorie zeigen, wie empfindlich der Wert der chemischen Verschiebung der Protonen auf Wasserstoff‐π‐Wechselwirkungen reagiert. Unsere Studie unterstreicht, wie sich die Protonen‐detektierte Festkörper NMR zur Methode der Wahl für die Untersuchung schwacher nicht‐kovalenter Wechselwirkungen entwickelt, die einen ganzen Zweig molekularer Erkennungsvorgänge in der Chemie und Biologie bestimmen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.