Abstract

In this work, an investigation of spin relaxation in GaN epitaxial layers with different doping concentrations and dislocation densities is presented. The measurements were carried out by the means of spinand time-resolved differential reflectance spectroscopy. The conditions of optical excitation were chosen with special care. In particular, spectrally narrow laser pulses were used to achieve selective excitation of the examined transitions in addition to the precise adjustment of the excitation energy, supported by the modeling of the differential reflectance. The spin relaxation times obtained for the free A exciton at low temperatures are in the range of 30 to 170 ps. In the proximity of the metal insulator transition, a slower spin relaxation was observed than for lower doping concentrations. The longest spin relaxation times were found in high quality, free-standing GaN layers with very low dislocation densities. Existing results in the literature can be strictly grouped into long electronic spin lifetimes of up to a few nanoseconds, obtained with Kerr rotation, and extremely short spin relaxation in the (sub)picosecond range, measured with reflectance experiments. This picture cannot be confirmed here. The spin relaxation times observed here lie 1.5 to 2.5 orders of magnitude above the values previously reported using the same experimental method. It is shown that the instances of extremely fast spin relaxation are caused by the properties of the optical excitation. The use of ultra-short and thus spectrally broad laser pulses, which prohibits the selective excitation of excitons, leads to a significantly different temporal behavior and strongly distorted results. This finding elucidates the apparent conflict between the two groups of results and forms the basis for further investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call