Abstract
The cycling of soil organic matter (SOM) by microorganisms is a critical component of the global carbon cycle but remains poorly understood. There is an emerging view that much of SOM, and especially the dissolved fraction (DOM), is composed of small molecules of plant and microbial origin resulting from lysed cells and released metabolites. Unfortunately, little is known about the small molecule composition of soils and how these molecules are cycled (by microbes or plants or by adsorption to mineral surfaces). The water-extractable organic matter (WEOM) fraction is of particular interest given that this is presumably the most biologically-accessible component of SOM. Here we describe the development of a simple soil metabolomics workflow and a novel spike recovery approach using 13C bacterial lysates to assess the types of metabolites remaining in the WEOM fraction. Soil samples were extracted with multiple mass spectrometry-compatible extraction buffers (water, 10 mM K2SO4 or NH4HCO3, 10–100% methanol or isopropanol/methanol/water [3:3:2 v/v/v]) with and without prior chloroform vapor fumigation. Profiling of derivatized extracts was performed using gas chromatography/mass spectrometry (GC/MS) with 55 metabolites identified by comparing fragmentation patterns and retention times with authentic standards. As expected, fumigation, which is thought to lyse microbial cells, significantly increased the range and abundance of metabolites relative to unfumigated samples. To assess the types of microbial metabolites from lysed bacterial cells that remain in the WEOM fraction, an extract was prepared from the soil bacterium Pseudomonas stutzerii RCH2 grown on 13C acetate. This approach produced highly labeled metabolites that were easily discriminated from the endogenous soil metabolites. Comparing the composition of the fresh bacterial extract with what was recovered following a 15 min incubation with soil revealed that only 27% of the metabolites showed >50% recovery in the WEOM. Many, especially cations (polyamines) and anions, showed <10% recovery. These represent metabolites that may be inaccessible to microbes in this environment and would be most likely to accumulate as SOM presumably due to binding with minerals and negatively-charged clay particles. This study presents a simple untargeted metabolomics workflow for extractable organic matter and an approach to estimate microbial metabolite availability in soils. These methods can be used to further our understanding of SOM and DOM composition and examine the link between metabolic pathways and microbial communities to terrestrial carbon cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.