Abstract

Chronic cerebral hypoperfusion (CCH) can cause cognitive impairments. Dl-3-n-butylphthalide (NBP) is widely used in neurological disorders; but, the role of NBP in CCH remains unclear. This study aimed to investigate the potential mechanism of NBP on CCH through untargeted metabolomics. Animals were divided into CCH, Sham, and NBP groups. A rat model of bilateral carotid artery ligation was used to simulate CCH. Cognitive function of the rats was assessed using the Morris water maze test. Additionally, we used LC-MS/MS to detect ionic intensities of metabolites between the three groups for off-target metabolism analysis and to screen for differential metabolites. The analysis showed an improvement in cognitive function in rats after NBP treatment. Moreover, metabolomic studies showed that the serum metabolic profiles of the Sham and CCH groups were significantly altered, and 33 metabolites were identified as potential biomarkers associated with the effects of NBP. These metabolites were enriched in 24 metabolic pathways.And the pathway of differential metabolite enrichment was further verified by immunofluorescence. Thus, the study provides a theoretical basis for the pathogenesis of CCH and the treatment of CCH by NBP, and supports a wider application of NBP drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call