Abstract

In this study, the effects of treatment with Ag, Au, Cu, Pd, CeO2, CuO, TiO2 and ZnO nanoparticles (NPs) on plant secondary metabolism were tested using an untargeted metabolomic approach in cell suspension cultures of Hypericum perforatum L. Variations in the accumulation of secondary metabolites were observed in cultures after exposure to NPs. Overall, the number of compounds increased by metal NPs was higher than that of metal oxides. Among the metal and metal oxide NPs tested, Ag and CuO respectively induced the greatest changes in secondary metabolism. Ag NPs induced the cellular accumulation of bisxanthone (540.3 fold) gancaonin O (214.2 fold) and fusaroskyrin (98.6 fold). Compounds that were most induced by other NPs were: hyperxanthone C (Au), apigenin (Cu), emodin (Pd), emodin anthrone (CeO2), dihydroxydimethoxyxanthone I (CuO), quercetin (TiO2) and gallic acid (ZnO). The presented results show that the secondary metabolites elicited in H. perforatum vary between the types of NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call