Abstract

Thyme is a culinary herb highly susceptible to increasing mislabeling occurring in the spice industry. In this study, proton nuclear magnetic resonance spectroscopy (1H NMR) combined with multivariate statistics was successfully applied with two authenticity purposes: (1) tracing thyme metabolic differences among three relevant geographical regions (Morocco, Spain, and Poland), and (2) assessing the influence of sterilization processing on the metabolic fingerprint. Multivariate data analysis provided six and seven key geographical and processing markers, respectively, including thymol, organic acids, chlorogenic acid, and some carbohydrates (e.g., sucrose). Additionally, for the first time, a mid-level data fusion approach was tested for thyme authenticity combining three complementary and synergic analytical platforms: gas and liquid chromatography coupled with high-resolution mass spectrometry, and 1H NMR spectroscopy, providing a comprehensive metabolomics insight into the origin and processing effects on thyme fingerprinting, and opening the path to new metabolomics approaches for quality control in the spice industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call