Abstract
Thyme is a culinary herb highly susceptible to increasing mislabeling occurring in the spice industry. In this study, proton nuclear magnetic resonance spectroscopy (1H NMR) combined with multivariate statistics was successfully applied with two authenticity purposes: (1) tracing thyme metabolic differences among three relevant geographical regions (Morocco, Spain, and Poland), and (2) assessing the influence of sterilization processing on the metabolic fingerprint. Multivariate data analysis provided six and seven key geographical and processing markers, respectively, including thymol, organic acids, chlorogenic acid, and some carbohydrates (e.g., sucrose). Additionally, for the first time, a mid-level data fusion approach was tested for thyme authenticity combining three complementary and synergic analytical platforms: gas and liquid chromatography coupled with high-resolution mass spectrometry, and 1H NMR spectroscopy, providing a comprehensive metabolomics insight into the origin and processing effects on thyme fingerprinting, and opening the path to new metabolomics approaches for quality control in the spice industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.