Abstract

Dravet syndrome (also known as Severe Myoclonic Epilepsy of Infancy) is a rare genetic epilepsy syndrome commonly associated with loss-of-function mutations in SCN1A, the gene encoding the α subunit of the voltage-gated sodium channel NaV1.1, resulting in haploinsufficiency. Like other voltage-gated sodium channels, NaV1.1 function contributes to the rising phase of the neuronal action potential; thus, the observation that loss-of-function mutations in this channel gene are associated with seizures has created a paradox for the field. Major work has been done to untangle this paradox during the past decade, resulting in the development of two distinct hypotheses to explain seizures in Dravet syndrome. Here, we review the history of these two hypotheses and speculate as to what the history of Dravet syndrome research might tell us about its future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.