Abstract

Dynamical systems are general models of change or movement over time with a broad area of applicability to many branches of science, including computer science and AI. Dynamic topological logic (DTL) is a formal framework for symbolic reasoning about dynamical systems. DTL can express various liveness and reachability conditions on such systems, but has the drawback that the only known axiomatisation requires an extended language. In this paper, we consider dynamic topological logic restricted to the class of scattered spaces. Scattered spaces appear in the context of computational logic as they provide semantics for provability and enjoy definable fixed points. We exhibit the first sound and complete dynamic topological logic in the original language of DTL. In particular, we show that the version of DTL based on the class of scattered spaces is finitely axiomatisable, and that the natural axiomatisation is sound and complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.