Abstract

Among various catalyst design strategies used in the α-diimine nickel(II) and palladium(II) catalyst systems, the unsymmetrical strategy is an effective and widely utilized method. In this contribution, unsymmetrical nickel and palladium α-diimine catalysts (Ipty/iPr-Ni and Ipty/iPr-Pd) derived from the dibenzobarrelene backbone were constructed via the combination of pentiptycenyl and diisopropylphenyl substituents, and investigated toward ethylene (co)polymerization. Both of these catalysts were capable of polymerizing ethylene in a broad temperature range of 0-120 °C, in which Ipty/iPr-Ni could maintain activity in the level of 106 g mol-1 h-1 even at 120 °C. The branching densities of polyethylenes generated by both nickel and palladium catalysts could be modulated by the reaction temperature. Compared with symmetrical Ipty-Ni and iPr-Ni, Ipty/iPr-Ni exhibited the highest activity, the highest polymer molecular weight, and the lowest branching density. In addition, Ipty/iPr-Pd could produce copolymers of ethylene and methyl acrylate, with the polar monomer incorporating both on the main chain and the terminal of branches. Remarkably, the ratio of the in-chain and end-chain polar monomer incorporations could be modulated by varying the temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.