Abstract

The development of general and more atom-economical catalytic processes for Friedel-Crafts alkylations of unactivated arenes is an important objective of interest for the production of pharmaceuticals and commodity chemicals. Ferroceniumboronic acid hexafluoroantimonate salt (1) was identified as a superior air- and moisture-tolerant catalyst for direct Friedel-Crafts alkylations of a variety of slightly activated and neutral arenes with stable and readily available primary and secondary benzylic alcohols. Compared to the use of classical metal-catalyzed alkylations with toxic benzylic halides, this methodology employs exceptionally mild conditions to provide a wide variety of unsymmetrical diarylmethanes and other 1,1-diarylalkane products in high yield with good to high regioselectivity. The optimal method, using the bench-stable ferroceniumboronic acid salt 1 in hexafluoroisopropanol as cosolvent, displays a broader scope compared to previously reported catalysts for similar Friedel-Crafts reactions of benzylic alcohols, including other boronic acids such as 2,3,4,5-tetrafluorophenylboronic acid. The efficacy of the new boronic acid catalyst was confirmed by its ability to activate primary benzylic alcohols functionalized with destabilizing electron-withdrawing groups like halides, carboxyesters, and nitro substituents. Arene benzylation was demonstrated on a gram scale at up to 1 M concentration with catalyst recovery. Mechanistic studies point toward the importance of the ionic nature of the catalyst and suggest that factors other than the Lewis acidity (pKa) of the boronic acid are at play. A SN1 mechanism is proposed where ion exchange within the initial boronate anion affords a more reactive carbocation paired with the non-nucleophilic hexafluoroantimonate counteranion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.