Abstract

Flexible and piezoresistive electronic skins (E-skins) with high spatial resolution are highly desired in artificial intelligence and human-machine interactions. In this study, a simple method is developed to pattern a piezoresistive layer using lithography, which can realize real-time tactile sensing and spatial resolution. The piezoresistive layer with a honeycomb hole array based on polymethyl methacrylate (PMMA)/multiwalled carbon nanotubes (MWCNTs) was fabricated using a reverse mold with a ZnO nanorod array. The device exhibits an ultrahigh sensitivity of 88 kPa-1 in the low-pressure regime (<10 kPa) and a fast response time of 110 ms owing to the conductive honeycomb structure. The E-skin-based PMMA/MWCNT honeycomb array film can be applied to monitor bending and vibration by changing the contact area of the hole walls. A 4 × 4 piezoresistive matrix was fabricated by lithography for a 16-pixel tactile-sensing E-skin, which realizes a four-dimensional resolution including the space and time resolutions of pressure points. In addition, by using the unsymmetrical structure of an alveolate PMMA/MWCNT film, the detection of direction and velocity for the movement and gas flow were realized. The obtained piezoresistive and unsymmetrical tactile sensor realized a four-dimensional resolution, including a three-dimensional space and a fourth dimension of timeline, which enables future applications of human-machine interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.